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FOREWORD

This work was prepared by the Lockheed Palo Alto Research
Laboratory, Palo Alto, California, under Air rorce Contract No.
F33615-69-C-1523. It was administered under the Structures Division,
Air Force Flight Dynamics Laboratory, with Mr. T, N. Bernr‘ein (FBR)

acting as Project Engineer.

This report was completed in January 1972 and covers work per-
formed between April 1969 and January 1972. The supervision of this
project was carried out by Mr. B. O. Almroth of the Structural
Mechanics Laboratory, LMSC.

This technical report has been reviewed and is approved.

FRANCIS JHWNIK,/ IR,
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Section 1.0

INTRODUCTION

Recent improvements in computer technology and numerical
analysis methods have led to significant advances in structural analysis
capability. Computer programs are now available for analysis of the
static behavior (linear or nonlinear) of almost any shell of revolution sub-’
jected to axisymmetric loading. For nonsymmetrical loading or for shells
of general shape, a static analysis is readily performed provided that the
response is linear. This capability is substantiated in Reference 1. How-
ever, nonlinear effects are frequently important in shells. Because L. ase
structures are thin, collapse or loss of stability is generally the critical
mode of failure. Thicker shells are often subjected to loads of such mag-
nitude that material nonlinearities become important. Reliable and depend-
able computational systems for this important class of problems have not

been developed, although there are computer codes available for some

special.cases.

Several years ago, a research program was initiated at Lockheed
with the goal of developing a computational system for such nonlinear
problems. This program has resulted in the STAGS (STructural Analysis
of General Shells) computer code for analysis of the static nonlinear re-
sponse of general shells. STAGS is based on a theory in which the shell
surface is subdivided, by means of a finite difference grid work, into a
set of subareas. The strain energy density for each subarea is then ex-
pressed in terms of displacement components and their derivatives. After
the derivatives have been replaced by their finite difference equivalents,
the energy can be calculated and, together with the potential energy due
to applied loads, summed over the shell surface. The total potential
energy expression of the shell so obtained is then minimized according to

familiar energy principles and a system of nonlinear algebraic equations



T

in the unknown displacements results. These equations are solved by a

Newton-Raphson technique.

STAGS is an outgrowth of work on the buckling of cylindrical
panels with nonuniform membranc stresses that was initiat:d at I.MSC
in 1963 under the sponsorship of NASA Marshall Space Flight Center
(Ref. 2). The basic nonlinear computer program for cylindrical shells
with cutouts (Ref. 3) and a linear version including analysis of free vibra-
tions (Ref. 4) were developed under the LMSC Independent Research Pro-
gram. Under contract with the Naval Ship Research and Development
Center (NSRDC), the linear version of the code was develcped to include

shells of revolution with smooth but othexrwise arbitrary cutouts (Ref, 5).

The work reported here extends the nonlinear version to shells of
more general shapes with cuiouts of arbitrary contour. In additica, inelas-
tic deformations and a capability to handle a finite difference grid with
variable nodal point spacing have been added. In a paraliel effort funded
by Lockheed's Independent Research Program, the equations were further
generalized to include nonorthogonal coordinates (Ref. 6). As this work
was completed before the end of the contract period, it was possible to

include the more general equations in this report.

Further expansion of the STAGS program has been accomplished
under parallel research studies funded by the Air Force Space and Missile
Systems Organization (SAMSO) and by the NASA Langley Research Center.
During the now completed SAMSO study, provisions were made in the
STAGS code to allow both the iemperature and material prof 2rties to vary
over the surface and through the thickness of the shell. In addition, a
bifurcation buckling branch was added:. Parameter studies were made to
avaluate the applicability of the bifurcation buckling appreach to reentry
vehicle anaiysis (Ref. 7). Although most of these extensions were made
primarily to render STAGS suitable for reentry vehicle analysis, they have

considerably enhanced the overall capability of the code,
4 . v

The NASA study is curreatly ir. yrrogress, Under this study, STAGS

is being develoned to handle segm: 1tec -nd branched shells, and to tieat




realistic types of shell wall constructions inciuding those which involve

anisotropic materialr. Finite difference expressions based on non-
rectangular grids ~ad an autematic grid generator are also being added.
A time integraticn scheme will be developed and included in STAGS.

This will permit the solution of dynamic response and dynamic buckling
problems. The NASA work is scheduled for completion by the summer of
1972.

A STAGS user's manual that documents all of the modifications

completed to date has been prepared (Ref. 8).
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Section 2.0
STAGS THEORY

v

1 In the application of finite difference techniques to shell analysis,
: ; it has been customary Lo assume that lines of curvzture constitute the
,,“'t; surface coordinate lines ‘vhich form the finite difference mesh. This
assumption results in orthogonal coordinate iines and “eads to simple
.jv.,q shell equations; however, there is a serious disadvantage to this apprcach
in that in maay instances shell boundaries do nut lie along lines of curva-
3 ture. When this occurs, boundary conditions can be approximated at best,
1 and then only with the introduction of extreme mathematical complexities.

For this ~e~son, it 1s advantageous .0 formulate the shell theory in terms

of generalized coordinates so that boundaries coincide with particula:

coordinate lines.

This section presents the generalized theory upon which the STAGS

k2T Sl T

computer code is based, Although no attempt is mad. to be exhaustive

‘ in the coverage of the basic shell theory, a brief description of the funda-
mental aspects is given. For additional material, the reader is referred
to Reference 9. In addition, methods for computing the shell middle sur-

face input parameters are presented.

2.1 Metric of the Shell Middle Surface

Consider a surface in space, described by coordinates cpl and cpz ,
which is embedded in a three dimensional Euclidean space defined by the
i Cartestian coordinates, x1 , x2 , and x3 , as showr.in Figure l. The

vector r to any point on the surface can be writter as

- 1+ &= ey
r = x kK, +x ky, rx k

1 2 3
Y
1

(L)

- X
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Figure | Coordinate System Used to Detine the Shell




= . . i .. . .
where the ki are unit vectors in the x directions, respectively. Now

consider the differential

& = alT 2— 3.
T = dx K +dx K, +dx K,
. (2)
= dx k

and define this expression for dr in terms of the shell coordinates cpl

and cpz by

& R 1 - Z
dr =a1dcp+azdcp
(3)
_ - o
. = aadcp

The quantities '51 ) 32 are called the covariant base vectors and ~an be

written as
1 2 3
3=T<1_3_x_+1;2§_+k3§>_‘_
4 a‘pd a(p B‘PQ
. (4)
- &
1 acpa

It should be ncted that, in general, the base vectors "50[ are not unit

vectors bu. have magnitudes given by

(5)

or




2 I, 1 1.2 1.2
ds =audcp dg + Zalzdcp dg¢ + azzd(p de

] (6)
= o'
a8 de” do
The quantities 348 27 called the components of the covaricnt metric
tensor, and arc defined by
N ach = aa . ai5 (7)

Two alternate forms of Ec¢. (6) are

ds2 = A2 dcp1 dcp1 + 2C dcp1 dq)z + B2 dc.p2 dc‘p2

ds? = 4% dg

dcpl + 2A Bcos b d(p1 dcp2 + B2 d(pz dcp2
Both of these formulations have been used in the STAGS User's Manuals;
the quantities A, B, C, and 6 are related to the components of the metric

tensor by

A = a;
B = ass
(8)
C = ABcos 8§ = ay,
a
cos 8 = 12

V2l a5,

It can be seen from Egs. (5, = 7, 8) that A and B are :neasure< 2 tte
2

. !
iength along the coordinate lines ¢ and ¢ , and that 6 1s e angle between

these lines.
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Since the covariant base vactors '51 , 52 are not necessarily
normal to one another, it is sometimes convenient to consider a set of
vectors defined by

FL a, x a
AR
(9)
5'2 = L a, x a
- /a 3 1
where 53 is the unit normal vector as shown in Figurel and a is the
determinant of the metric tensor
5, = L 7«3
3 A 1 2
(10)
a = la_| = a._ a. -a°
'“ap 1722 7 %12
The vectors defined by Egs. (9) are called contravariant base vectors
and have the properties
-1 -
3 = 1
-2 -
a - a, = 1
(11)
2.5, = 0
.3 = o0
or
o o

8 . - \ .
6@ 1s the Kr  =ker deita and has the properties
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B 1 H (¢ 4 = B
6(1, = (13)
0 s O # 5

The contravariant metric tensor components are defined by

L8 - o P (14)

which can be written in tesms of aa as

-

a

| no_ %2
i T Ta
i 22 _ ™
Y (1.5)
12 . %12
a - — —
a

With the aid of Eqs. (10 through 15}, Eqgs. (9) can be written in the form

% = o%P e (16)

2.2 Curvature Tensor of the Shell Middle Sur.ace

The curvature and twist of a surface are defined by the curvature
and torsion of lines embedded in the surface relative to the unu -ormal vec-
tor. For instance, the normal curvatures of a surface with respect to the
coordinate lines cpl and <p2 are defined by

by T b oas

- H 3 “ - N e
where o0 aad b e the o 7 L irg Ve Tors ob the (o0 e aates

o e

AL Y
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and cpz , respectively. These vectors can be written as

a (7
LI Ay

o
I

ol
o
"
‘U—;I&
™
—
™~
\_/

where ds1 and ds2 are given by

= o
ds1 ./au dy

ds

2
2 = Vay, d¢

Hence, the normal curvatures of the shell middle surface are

e e Lty e

! b . 1 d ( 3) ) -
] T — (= ag
" Va3 dg "

(17)

The twist of a surface with respect to a coordinate line is the tor-
sion of the coordinate line wi.h the sign chosen such that a positive twist
occurs when the normal vector 53 rotates about one coordinate line towards

the other coordinate line. This leads to the dcfinitions for twist of a surface

da =2
b = - 1 .,13_ . ._..E.i.__
tl
Ve do 222
_ (18)
da -1
b= . 1 3

£
L
§

o
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The curvature tensor of a surface is defined by
@&,
b = e cee— a (19)
o
af 3(9 B

This is a symmetric tensor whose indices are raised and lowered accord-
ing to

B - pB _ L Pp
ba bap a b apa
- nP
b = b
B v 2pB (20)

de = b: aDB

The components of baB are related to the changes in normal curvature

and twist by
b
bncy = a‘m {d not summed)
bB
b = —X {a # B; @, B not summed)
te BB
a a
ao

It can be seen with the aid of Eqs. (10, 15, 20) that, for orthogonal coordi-

nates (a12 = 0), btl = bt2 .

Two invariants associated with the curvature are the mean curva-

ture H and the Gaussian curvatvre K

= 1 Lo
H = > ba
(22)
.1 o B o B
K = 5 (ba bB be ba>
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2.3 ° Displacements aud Derivatives

The displacement vector of a poiat on the shell middle surface is
defined by

a, 3 (23a)

The quantities u” are called the contravariant components of in-plane

displacement. An alternate form of (23a) is

u = u a% + w3 , (23b)

where the u_are the covariant components of in-plane displacement.
o

Since ag 1S a unit vector and normal to aa and a?% , there is no dis- i

tinction between covariance and contravariance for w. From Eq. (16)

it can be seen that u¥ and u, are related by

o o B
u = a u
B
(24)
g
u = a u
o aB
The covariant and contravariant displacem+«nt components can be i

related to physical quantities. Consider the displ¢ ce” 1ent vector written

in terms of unit covariant vectors

u = u ! + v 2 + w -53 (25)
‘/E—l‘l fa—ZZ

The quantities u and v represent the physical components of in-plane

displacement in the directions defined by the covariant base vectors a

1
and as respectively. Equating Eqs. {Z<. ' to Eq. (25) with help fromn

Eqs. (7. 14, 1¢) yields

v
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The partial derivative of the covariant base vectors are defined

by

v
(26)
v
(27)
a {28)

The ba 53 term can be deduced from E-. (19). It foilows from Eq. (1&!

that T‘a can be written as

g

The partial derivatives of the contravariant base vectors can be deduced

frem Eq. (28, 26) as

—
da -0 =0

= i
o Bo

The guantities

(30)

2
[t
w

arc Christoffel symbols of tl.e second kind, Symbols




X Baa -
Topo = Tap 2ap = o (31

These quantities expressed in terms of the partial derivatives of aaB
are

da da da
I | ap Bp _ aB
Tapp = 2 ( F T Ta —-—p) : (32)

With the aid of Eqs. (28, 30), tbe partial derivative of the displace-
ment vector u [Eq. (22,23)] can be written as

L L - AR T AL A 2 3,
acpcr o o o aq}a
(33)
_ B ~ -, W =
= uB[a t b uga, b, wag ¥ 3 2y
?
The quantities us!a and usld are called the covariant derivatives of
ug and u® with respect to ¢” and are given by
du
= B . P
uﬂ'a A rBa “p
(34)
du
o]
ubi = B + B 2P
o aq)d Po

The concept of covariant differentiation can be extended to second order
tensors such as b

af
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(35)

P
bB = a . B o A B
“lp 3P Tox P = Toa P2

The quantities appearing in Eqs. (33} can be regrouped to define the dis-

placement gradients Yop and ch

Yop = uo.le - baB w
(36)
B = _3_w_ + bB uB
o Bcpa o
Hence, the derivatives of u take the form
du —B -
———— — = +
¥ Yoo ° Py 23 (37)
2.4 Deformation
The deformation of the shell middle surface can be specified in
terms of the changes in the metric and curvature tensors. With the de-
formed state of the shell characterized by a tilda ( ;Q'B ) gﬂ'ﬁ ) » the
strain and curvature-change tensors can be defined by
28 T B " tap
(38)
® g = gB bB
o o o
-15-

38 AR W

Yaw‘:
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It can be seen with the aid of Eqs. (6, 13, 22) that these definitions lead

directly to the changes in incremental arc length and mean curvature

~2 z _
ds“ ~ds™ = 2 € B dcpa'dcpB

(39)
B

M - o
H-H = o B

3% Ron

Although GCYB and n(’ys are independent of any particular metric tensor,
it is convenient to refer these quantities to the metric of the undeformed
middle surface; i, e., in operations expressing, for irstanre, covariant

strain or curvature-change tensors in terms of contraveriant tencors (or

vice versa) ao’B and aYB are used rather than zfaB and ga/B . For
@

example,

eﬁ = ¢ apB

o op

B (40)
- WP
MQB Ay aHB

In addition to strain and curvatucse-change, portions of the shell middle

surface may undergo finite rciations. If such is the case, the expressions

for GQ/B and x X when written in fzrms of the displacement gradients,
o
must reflect this. Since the general expressions for €5 and  n 8 are
[ o3

extremely complicated, it is desirable to use stmpler, approximate expres-

sions whenever possible.

The rotation of any part of the shell middle surface can he split

n 8 is not genernily symmeiric; therefore, its indices must be moved straight
o
up and down only. The dot appearing over the o assures this, Note that a
-
dot in the terms ¢ B . e,b 1% not required since € = ¢, ; hence, for
o & aB Pa
symmetric tensors, no distinction i the vrdering ot indices 15 required.

“lo -

3

o s
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into two parts. an out-of-plane rotation or ''tilt" and an in-plane rotation
commonly called the '""rotation abnut the normal. ' When the angle of tilt

{Q) is moderate, the tilt and in-plane rotation {w) can be approximated by

sin e~ —— (Ya1 - "2)

2/a
(41)
2 a
sin Q ~ B Ba
The expressions for ech and has used in STAGS are
1 ( 1 p 1
= = |~ + + - pai
Cab Z B YBa) Z Yoo Y ) Ba BB
(42)
- ! p . p
o8 Ppiy * Py YoB bch Yoo

These approxirations are based upon the assumptions that the tilt can be
moderately large (@ <. 3) and that the in-plane rotation is of the same
order of magnitude as the square root of a typical middle surface strain
(w=0 {/¢) }. A complete derivation of the above is given in Reference 9.
Physical components of strain and curvature-change for lines of curvature

coordinates are given in Section 2. 9.

2.5 Strain Energy

The strzin energy density for thin elastic shells is

3

_ 1 E ap _ BA af _pX t
U = = - ‘
J > % (1-v) a”F a™ 4+ va " a teaB ep)\+-1-2-na!3 np)\

(43)

I'or shell coordinates & and 1 and with the use of Eqs. (8, 15}, Eq. (43)




can be cast in the form

2 _ 4A cos 6
114 B

o= 2 A sin 9™t e (A sin §)"2

eg Ceq

2

+2 [1-(l-v) 5in%0] (AB sin®g)"% Geg eqqt 2 (AB sin®8) "% [(L-v) + (L+v) cos®8) e

48 cos 6 . _. -4 . -4 2
- — {B sin 9) €gn e'ﬂ'ﬂ + (B sin 6) eml
(44)
P E ] s g™ gy - R0 (asin 070 ngg gy

+ 2 [1-(1-v) sin®8)17% (AB sin®9)~? Hgg tqq * 2 (AB sin%8) "% [(1-v) cosZ6] n‘é,n

. 4B cos 8 \B sin 6" 2

+ (B sin 9)-4 nnn

Sy S ——

4% H
T "en

where D and K are the membrane and bending stiffnesses, respcctivaly.

D =
l- \)/‘
(45)
K = _.._E..t_i
12(1 - v5)

The covariant components of strain and curvature-~hange expressed

in terms of the displacement gradienis are
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“PenYog bgn*-n]

_ e g 3
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where the commas denote partial differentiation. The displacement gradients
written as functions of the physical components of displacement u and v are
(see Eqs. (8, 26, 27, 34, 36))

Bg -
(48)
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Ygg = A""g 4+ AlB (A'g'B’gms 8) v+ A cos e"’g'bggw
Yeq = Au,n + [(A cos e),n-B,g] v+ A.0s ev,,n-bg.nw
Yog = [(B cos 9)’g'A’1\] u+ B cos 9u,§+Bv,g -:bg,nw
Yy = B/A (B,n - A, 5 €08 8) u+ B cos eu,n+ B Viq T O W
vEe = UAw, o+ [(cos o/ (AB sin)] [A, - Beos 8, ] u
| + [1/(AB sinze)] (A, 3" cos 8B, g] V- bé w (49)
Y-gﬂ = 1/A LT + [1,’(A2 sinze)][(A cos 6), n " B, 53 v
+ [cos o/ (A% sin”8)] [A, ycos 8- B, ] u -bh w
Y.“g = UBv, g + 0/(B% sin® 87 [(B cos 8¢~ Al u
+ [cos 8/(B% sin’e1] [B, gcos 8- A, ] v -bg w
vl = VB v+ [cos 8/(AB sin8)] (B, . - (A cos b, nd

+ [i/(AB 511126)] (B, .-cos 84, u- bl\l W
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and the Christoffel symbols are (Egs. (8, 32))

rg = [BA,. + (AA, . -C,  )cos 6]/(AB sinze)
€€ 'g T

L. [C,.-BA,_cos 6 -AA 3/'(13& sinze)

33 3 g i

rg = [A,.,.-B,_.cos 8]/(A sinze) (50)
EMn T TTE

o - .2

Tem = [B,g A, p cos 81/(B sin”g)
£ _ _ _ 2 .2

I‘Tm = [C, M BB,g AB, n oS 8]/(A” sin”g)

rl = [AB,_+ (BB, .- C,.) cos 8//(AB sin6)
m l '€ gl

Substitution of Eqs. (48-50) into Eqs. (46, 47) yields the covariant
strain and curvature-change tensors as functions of the physical displace-
ment components u, v, and w. These equations are then substituted

into Eq. (44) to obtain the strain energy as a function of the dispilacements.

The effects of geometric imperfections havc been accounted for
by modifying Eqs. (46) to include small values of an initial normal dis-
lacement w . Thet s W, , W, and W, + W,
P ent w e terms w gﬁg w.ﬂBn nd w FBE w,nB§ were

2

added to the threr middle surface strain €§§ ) em, , and eng , respectively.
|

Geometric imperfections are important because the critical loads
of many shells are sensitive to such imperfections., In addition, there are

many cases where there exist planes of symmnetry with respect to loading

and geometry. In such cases, antimetric deformations will only be found
1f they are "triggered' by the inclusion of antimetric geometric imper-

fections.
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2.6 Solution Procedure

The solution procedure used in STAGS is based on the principal of
stationary potential energy. After the expression for strain energy den-
sity is formed, as explained in the previous section, the displacements
and their derivatives are replaced by appropriate finite difierence
expressicns. (A set of finite difference expressions for grids with
variable spacing is described in Section 3.0.) The strain energy density

at mesh station i is then written in the form

AU=52-z D'z (51)

where D is a € x 6 matrix of constants and Z' is the vector of strains and
curvature changes at station i. (In this report all vectors are understood
to be colurnn vectors and * desig.ates the adjoint operator. Thus, Zi*
is a row vector.) The matrix Di is obtained by integration through the
shell wall and is a function of the geometric parameters of the shell and

of the material properties. The strain vector Zi is a nonlinear (quadratic)
function of the displacement unknowns and the geometric parameters. The

vector of stress resultants at station i is given by
(52)
The total strain energy of the shell is then

U = Z AUt 2t (53)
3

where a' is the area of the ith mesh subregion. The potential energy of
the work done by external forces, W , may be expressed in discrete form
by

5

i
=
G
L

(o




LAk

where F is the vector of external forces. As the strain expressions
are of second order in the displacement components, the total potential
energy, V , of the shell is a polynomial of 4th degree in the discrete

displacement unknowns. It is given by
Ve=U-W (55)

A necessary condition for static equilibrium is that the potential energy be
stationary. For a polynomial, this requires that the gradient of V wvanishes

and leads to the equation

LY. = F {56)
Here L is defined as the nonlinear operator such that

LX = Grad U (57)

The derivation of the complete nonlinear solution of Eq. (56) as well as of
bifurcation buckling is facilitated by introduccion of the concept of the
derivative L' of L (Ref. 10). In particular, for the operator L, the deri-
vative L' (sometimes called the Frechet derivative of L) is an n-by-n

matrix whose elements are

2

Y
L (58)
B ) K

Because L' is a function of a particular displacement vector X (unless
the nonlincar terms are dropped), the Frechet derivative will usually be

denoted LE){ to indicate this dependence. With the use of the derivative

L' of the operator L, Newtor's method may be readily gencralized to

obtain the solution of £q. (56). The 1teration 1s defined by

WK _ N - R
Y (Rpq - X = F - LX (59)




If Xo is an estimaie sufficiently close to the solution X and if L} is
not a singular matrix, the iteration converges to X . Under these assump-
tions, it also can be shown that the converged solution is unique (Ref. 10).

2.7 Bifurcation Buckling

The application of Newton's method and the modified Newton method
in STAGS to obtain a nonlinear collapse analysis is discussed in the pre-
vious section. Jt is interesting to note that the mathematical characteriza-
tion of bifurcation buckling also is provided by the generalized Newton
method. Let Xo
external forces. If every neighborhood of XO contains another vector Y

be a solution of Eq. (56) under a given vector F of
which satisfies the equation

LY = F (60)
then bifurcation is said to occur for the shell under the load F . From the
previous remarks on the conditions for convergence of Newton's method to

a unique solution, it follows that a necessary condition for bifurcation is

that Lico be a singular matrix, or
det (Lko) =0 (61)

Classical bifurcaticn buckling theory (with linear prebuckling analysic) may

be easily obtained from Eq. (61). It is assumed that XO may be written

X, = X (62)

where XL is the linear solution for a lord vector FL . Thus, Eq. (61)

becemes

det (L' ] =0 (63)

24~
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Equation (63) is an algebraic eigenvzlue problem of the form
2
det (A - B -12°C) = 0 (64)

In classical bifurcation theory, the C matrix, which arises from the pre- ‘

buckling rotations, is often omitted and the eigenvalue problem
AX = BX (65)

is obtained.

When bifurcation is considered but the prebuckling displacements ;
are not linear, the solution of Eq. (6l) generally requires a stepwise pro-

c=dure. One such method is given by the recurrence equations

det (L;kﬂ Xk) = 0

.,

(66)

in which the starting vector XO may be represented by the linear solution.

A sequence of eigenvalue problems is solved and, if the method is
successful, }‘k approaches unity. A nonlinear bifurcation treatment [equiva-
lent to Eq. (66)] was presented in Reference 1l and has beer used successfully
to study a large variety of problems. Icr the two-dimensional problems
under consideration here, it appears that such methods may be as costly as
the complete nonlinear analysis available in STAGS. Conseqaently, only a
classical bifurcation buckling analysis is implemented in the 5TAGS pro-

gram.

The formaticn of the A and B matrices of Eq. (65) will be con-
sidered briefly. The e'ements of the Frechet derivative matrix L')lX
{which define the aatrices A and R) are determined according to Eq. (58).

The rules for computing derivatives of polynomials are casily programmed,

o




\

and the formation of the A and B matrices, tkerefore, is we!l suited to

awtomatic treatment on the computer. Thus, for example, if X and

(i)

X(j*, are the i™! and ith displacemert components, we have, using Eqgs.
)
{52), (53), and (54):

2 m 2 .k
¢"U - Z RS 3 kS (67)
. X o X, X,
@ *u) @ Fo)
k=1
Examining the k™® term of tais sum,
S A e ok, a2 ok azk (68)
X .. oX.. X 35X s P =X
X ¥ w ) (i) G)

In the first term on the right-hand side of Eq. (68), note that Sk is the
iinear stress resultant vector ot station k and that only the quadratic
terms (rotations) need be considered in forming the partial derivatives
BZZk*/BX(i) BX(J.) . Contributio, s from this term go into the B matrix.
Assuming the prebuckling rotations may be neglecsed for the classical
theory, the last term of Eq. (68} generates additions only to the A matrix.
The A matrix is thea identical to the linear stiffness matrix. If the pre-
buckling rotations are included (nonlinear bifurcation), the last term of
Eq. (68) generates a C matrix and provides additional contributions to the
B matrix. In this case, the prebuckling stress resultant vector S would

also include nonlinear terms.

In conclusion, it should te noted that bifurcation buckling theory is
often based on the concept of adjacent equilibrium states. Of course, the
same algebraic eigenvalue problem is ultimately obtained by both methods.
However, the approach presented here seems to provide a more simple
recipe for definition of the basic matrices of Eq. (65). The recipe is out-
lined 1n Egs. (67) and (68} and leads to straightforward algebraic procedures.
In addition, the relations between linear and nonlinear bifurcation theory

and Newton's method are clarified,
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2.8 Computation of the Components of the Metric and Curvature Tensors

The components of the mnetric tensor A, B, C and of the curvature
tensor baﬁ can be computed according to the foliowing sequence of opera-

tions:

. . 2
i) Denote the cartesian coordinates x1 , X x3 by x, v, z,

.respectively, and the surface coordinates cpl , q_:z by €, . Thex, vy,

z are then determined as functions of € and 1.

x = x(§,7)
z = z(5,T)
2) The metric tensor components are computed with the aid of Egs. (4, 7)

2 - X gx dz 20
BY = arn = () + (3F) ¢ (+) (70)
0x Ax 3y oy 2z 0z
= A 5 = = —_— — e il
G ABcosb agﬂ SE 3T SE 31 T VE 3T
3) The components of the curvature tensor are
.2 2 2
o oTx 3 v z
0ep =5 k23 . —4—=2 kg + — klZ
- «g a3 at,
2 2

k (71)

¢Tx Ay 37z
b,. = —_ZE‘M k23 + ——7\07‘ k3l 1 —Za»« kl&
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Since the sign of the curvature tensor was chosen so that positfive
curvature results from an inward point unit normal [see Eq. (19)], care
must be taken ¢o preserve the sense of baB by remembering that it is

defined by the cross product ag X aq -

As an example, consider the case of an elliptic cone as shown in
Figure 2. The parameters o and B are the tangents of the cone half apex
angles in the x-z and y-z planes, respectively, § is the elliptic coordinate,
and T is the axial coordinate. The relationships between x, y, z and

E, T are

x = gT cos §
y = BN sm § (73)
z = T

Note that this choice of & and T results in an outward pointing normal as

shown in Figure 2.

The a and b
1%

B are computed from Eqgs. (70, 71)

B

ag = 7 (az sm2§ + BZCOSZE) + 1
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TI(B?‘ - az) sin € cos £

afz cos2 g + BZ e.in2 g

S z

72 0P (74)
= 0
= 0

'ﬂz (az sin29 + BZ cosze + az BZ)

2.9 Physical Components of Strain and Curvature-Change

Fo~ lines of curvature coordinates, the physical components of

strain and curvature-change are given by

‘o8
6 = & (1’10 SUITI)
‘}a a
(%64
(75)
)
" = ok (no sum)
(o) 2 a
oo BB
With the components of the metric and curvature tensors written as
3 R VA
% = V%2
(76}
L. '
o 11
2 “22
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The physical components of the displacement gradients {Eq. (3b6)) take the
form
= _1_. u + al' 2 u -
R e S Y2 -
= L 2,1
Yizy T oo Y,z T oae, (@)
(77)
I T e
Yoy T oe Y2hi 7w, )
v Lo,y cal W
(22) @, (2), 2 @y 1) T,
1 1
B = —w + — u
(1) Q’l » 1 1‘1 (l)
1 1
: B - = _ W + — u
i (2) @) » 2 r, (2)
where & comma denotes partial differentiation and the quantities u, , are

(o)

the physical components of displacement in the gpa directions.

The physical components of strain and curvature-change are deter-

mined from Eqgs. (42) and are found to he

B 1 2 1 2 12
‘uy T Yy Yoz Yy f oz ovey t oz By
-1 + + L L t+ - By &
; f12y T Z (Y(lz) Y(21)) Z fan Ya2y T 7 Y Ye2) Uz Pu) te)
4 (78)
. . . 2 b2 1 e
“(22) (22, Z ey TT Y2y TOZ Py
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Section 3,0
FINITE DIFFERENCE GRID WITH VARIABLE SPACING

For better economy in the analysis a capability has been provided
for the use of variable spacing finite difference grids. The shell surface
is covered with a system of mesh lines (see Fig. 3) whose coordinates '

are given by

84
o}
fu

y: » =L n

where x and y are the curvilinear surface coordinates. Corresponding

to each pair of values (i,j)i =1, m;j=1, n, a rectangulér region Ri ;

is defined with sides of length

a.

1, 12 Ixi+l - X

i-1]

b, .
i,

1/2 ij+l - Yj-l’

Note that Ri ; is rectangular on the map of the shell provided by the surfane

coordinutes but not generally on the shell itself.,

The regions Ri ] (and lengths ai i bi j) are modified at bounda-
) ’ b
ries of a shell by including orly those portions which are ‘nside the panel.
A douhle integcal of a function f over the region R of tne panel may then

be approximated by




Figure 3

Shell Surface Covered With A System of Mesh Lines
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The discretizatiorn. is completed when the integrand functions fi,

are evaluated at the centroids o’ the regions Ri,j in terms of the neighbor-
ing displacement components. It should first be noted that ihe tangential
displacements u and v have been located at corners of the regions Ri,j .
Furthermore, the energy expressions for a shell include derivatives of u
and v only up to the first order. Hence, even with arbitrary spacing, only
central difference formulas for the u and v displacements are required.
In contrast, the normal displacement w has been located at the mesh node

points (x.1 ) yj) and more general finite difference formulas must be developed.

The coordinates of the centroid »’ a region Ri j are given by
’

X, 1/4 %,y + 2% + X

1+1)
(31)

Y

1/4 (yj-l + 2Yj + yj+l)

Variable spacing is first considered with respect to a single coordinate x
only. With the help of a Taylor's expansion (or equivalently by the use of
interpolation formulas), the difference formulas for w, w, x and Wi

at Zi may be established as

(w), = w|; = wi_l/lé « [(h-k) . (3k+h)/(h2+ hk)]
1
+ wi/lé * [(h+3k) + (3h+k)/(htk)] (82)
bow, /16 - [(k-h) - (3h+k)/ (hk+k")]




(w’x)i = Wy x = = - wi-ll(Zh)
i
+ w,; [1/(2h) - 1/(2K)] (83)
+ wi+l/(2k)
(w,xx)i = Wiyl = w._ ;- 2/[h- (htk)]
X. .
1
- w, - 2/(h K] (84)
oy s 2l ke (o]
where
b= oxox
(85)
k = 41 7%

The corresponding formulas for the y coordinate are obtained by

appropriate substitutions and are denoted with superscripts

(w)?

= W'N
v,
J
b2
(W.y) = Wiyl (86)
Y
w, V¥ = w, |
vy yy'o
)

The required two dimonsionar differcice formulas are now obtained




by combining the formulas for both coordinate directions

Wiy = Wi(iy%‘l = () - ((“')j)i
";'x’v;bj - W’XXI(’;( :;”) ) ((w’xx;i)J
s (87)
P Tl gy T )
i'Y;
I w’xyl&i’?i) = )I:Y)J

In general, these equations involve the 9 point ''star' of neighboring values.
However, it is easily seen that all of the formulas reduce to the standard
central difference formulas when uniform rectangular spacing is used. All
of the difference formulas are exact when the displacement function w

behaves quadratically

The inclusion of nonorthogonal coordinates and of variable grid
spacing extends considerably the class of cases that can be solved by
use of STAGS. The grid lines can be made to follow boundary lines and
cutout edges rather than lines of curvature on the shell surface. As an
example, for a cylinder with a circular cutout, one can use a grid as
shown in Figure 4. This grid system is described by the mapping

function
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Figure 4 Grud for Cylinder With Circular Cutont
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X = R sia _F cos $/R’
(88)

Y = R <os _F cos $/R’

Z = Fsin

However, it was found that use of this grid leads to inaccurate results
unless ithe spacing between the straight gridlines are very close together
in the neighborhood of the corner. The reason for this is that the equations
for the strains are inaccurate if the angle bet.-een the coordinates changes
significantly between two adjacent gridpoints. It appears to be more
practical, until other finite difference expressions have been developed,
to use¢ a different approach. Fcr shells with cutouts that cannot easily be
made to follow & reguiar net, it is suggested that the user written subrou-
tine for a variable thickness shell be used. 7T!lLe shvil thickness iz set
equal to zero if a gridpoint falis inside the cutout. The computer program
then eliminates as unknowns the displacement components at points with
zero thickness. This method is demonstrated in the example given in

Section 5. 3.




Section 4.0
INELASTIC BEHAVIOR

4.1 Introduction

Due to the extreme complexity of the problem, it has been necessary
to ormulate theories of plasticity which greatly simplify material behavior.
While in many cases these theories give satisfactory results, thei< are
other cases in which they faii. It is shown, for instance, in Reference 12
that for loading histories with sharp turns in the stress space the classi-
cal theory with isotropic strain hardening may give very poor results.
Typically at collapse there is a very sharp change in deformation pattern
and, consequently, a sharp turn in the stress path. Other theories have
been proposed which more adequately describe the material behavior in
such cases than does the classical theory. The Batdorf-Budiansky slip
theory (Ref.13) is probabliy too cumbersome for practical application, bat
the type of theory proposed by White (Ref. 14) and Besseling (Ref. 15)
appears very promising because it is rather simple in its appiication, yet
it relains such features as strain hardening and the Bauschinger effect.

For these reasons, it was celected for use in the STAGS code.

Introduction of inelastic behavior has been done within the frame-
work of the energy principle upon which the elastic analysis was based.
Essentially, the plastic deformations are considered as load terms; they
are completely analogous to thermal expansions except that they are not
known in advance. A series of clastic problems ar: solved by the use of
energy principles in which the "load terms' are gradually modified until
they correspond to ~he computed state of stress and to specified nonlinear
stress strain rclations at all points over the shell surface and throug' the

shell thickness.

-4 -
17}
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4.2 The White-Besseling Theory

Tre Nhite-Besseling Theory, as applied here, assames that the
material consists of ¢ everal components which have id<ntical elastic pro-
perties and exhibit ideal plasticity (no strain hardening) but have different
yield strength. As the strain is the same in all components, the stress-
strain curve will experience a decrease in slope as the stress reaches
the yield limit for any one of the components; th: respective components
then cease to take additional load. The composite thus exhibits strain
hardening with a piecewise linear stress-strain relaticn. Use of only one
component will, of course, result in application of ideal plasticity theory.
If the stress is reversed after loading beyond the yield limit for one or more
components, yield will cccur in the reversed direction at an average stress
in the composite which is lower than the stress for original vield. This
is demonstrated in the uniaxial stress-strain curve shown in Figure 5.
Tension is first applied, OAB, beyond the yield limit and followed by
strain reversal, BCD, into the zone of yield in compression. The yield
ellipse for tae weakest component and the !oading history in this component
are also shown in this figure. Clearly, yield in compression will occur
when the total strzin is (t»:1 - Zey), i. e., the yield in compression occurs
at a much lower stress if the .naterial previously has been subjected to
tension stresses above the yield point. To introdice the Bauschinger
effect this way is appealing because it reflects the microstress theory

which now generally is accepted as the explanation of the Bauschinger effect.

4.3 Implementation of the White-Besseling Theory in STAGS

The White-Besseling plasticity theory 1s iniplemented in the com-

puter program in the following manner:

1)  The inelastic behavior of the material is defined throuagh
spacification of the uniaxial stress-strain curve. This curve is piecewise
linear and the input consists of stress ard strain at cach of its coiners. The
relative volume anc the yield strength for e.ch of the components 1s then

compuated internall . The transverse strair 1s deiermined such that the
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total stress in the transverse direction is zero. It seems'possible to
reflect more accurately the actual stress-strain relations, including

anisotropy, if self-equilibrating initial stresses are included.

(2) The strains are estimated for all points in the shell over the
shell coordinates and through the thickness. This generally is done through

extrapolation from previous solutions.

(3) A subroutine is called within which, for each of the material
comporernts, the stress corresponding to the assumed strains is determ’ned.

The total stress for the composite is then found,

J

%otal - Z Vi %

i=1

where J is the number of components, \£ is the relative volume occupied

by component number i ,( v, = 1. 0) » and 0; is the yield stress for

component number i. i=1

(4) Once total strains and stresses are known, the plastic part
of the strain increment can be determined and added as a pseudo-load

in an elostic analy sis.

(5) New strains are computed and used as estimates. The pro-
cedure is continued until the computer strains agree to within a given margin

with the estimated strains.
The following operations are performed in the above referenced subroutine:

(1) Information about material properties is transferred into
the subroutine together with the estimated strain increments (At-:1 » Aey , and

AY) and stresses at the end of the previous load step (31 , '52 y Y

(2) New stresses arc compt ted under the assumption that the
load step is elastic,
E

o = o + , 5 (Ae:l + vAez)
-V
A (A€, + VAE,) (89)
"2 2 ) 2 2 1
-V
T o= Tk Eay/T204+0)]
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(3) Set oy = oy + cg - o0, + K2 2 (90)

-,

where k is the ellipse ratio for the assumed yield surface (usually, K“ = 3).

(4) If Oep is less than o%, » the ioad step is elastic in this com-
ponent (loading or unloading). If this is the case for all components, there
are no psuedo loads caused by plastic strain increments and the calculations

for the load step are concluded.

(5) If o

at least partly inelastic for this component. As we have assumed ideal

T is larger than o%. for some component, the step is

plasticity the stresses can be computed from the conditions that

2 2 22 _ 2
o t 0, - g0, * k1" = Oy (91)
where
- E The - AcP -
01 = 01 + -1--—\:2 [Ael Ael + \)(AGZ Aeg)]
o, = 5, 4+ —L ae, - 6+ v (ag - o) (92)
2 2 * T2 2~ 8% 1759

-~ E P
T = T 4 TRy [Ay- AY]

and that the plastic flow is perpendicular to the yield surface

p R ~ p ~ _ ~
hey 2oy -0,  A§ 20 -0, .
—_— o — = _ = v (93)
Aeg 202 -0 A\P 2k™ 1

After the stresses have been deterniined in the components, the average
stress in the composite is found readily. As the el-stic constants are
the same for all components, the plastic part of the strain increment

(r. e.. the pseudo loads), can easily be obtawned,

-44-
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The acquired ability to handle cases with inelastic behavior

is demonstrated in cne of the examples discussed in the following section.
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Section 5.0
RESULTS OF SAMPLE CASES

In the folloving section are presented some numerical results
obtained through exercise of the program. The examples were chosen

such that the recent additions to the program could be verified.

5.1 Cylinder With Rectangular Cutout

Analytical and experimental results for cylindrical shells with
rectangular cutouts were reported earlier in Reference 3. The benefit
derived from the use of a variable mesh spacing has been evaluated by re-
examining this cylinder problem. The cylinder has two diametrically oppo-
site cutouts and a radius-to-thickness ratio of 400. It was reported in
Reference 3 that-a reasonably accurate analysis for such cylinders would
require excessive computer time. Numerical results for a uniform finite
difference net vith 9 points in the axial and 20 points (9 x 20) in the circum-
ferential direction (also presented in Ref. 3} are shown he.'e in Figure 6,
Due to improvements in the efficiency of the computer program, it is now
possible to obtain much better results even with constant grid spacing.
Curve B is obtained with a finer net (16 x20), A finite difference mesh
was designed also in which the minimum grid spacing is identical to -
that used for Curve B, but which gradually increases away from the cut-
out urntil it is approximately doubled. The displacements corresponding
to this analysis are practically identical to thuse obtained by use of grid

with constant spacing, but “he computer time is reduced by about 40%,

Curve C was determined by use of a minimum grid spacing of 0.2
inch at the edge of the cutout. Moving away from the curout the spacing
increases by a factor of 1. 2 from one mesh to the next until the maximum

grid size of 0.6 inch is obtained. For Curve D the minumum si~c 1s 0,17
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irch, the factor is 1. 5 and the maximum size is again 0. 6 inch. The
results obtained by use of the latter mesh appear to te in very good
agreement with the experimental results. The computer time correspond-
ing to the determination of one of these curves is approximately 0. 5 hours
(UNIVAC 1108). For analyses with even finer mesh sizes, therefore, the

analysis was restricted to loads below 845 pounds. The results in Table I

- show that additional refinement of the mesh would not substantially change

the results shown in Curve D.

Table I
Displacement w, at P = 845 lbs
Net Min. Spacing Factor Max. Spacing wy
D (13 x 21} .12 1 . 60 . 00877
E (18 x25) .12 1.2 . 60 . 00850
F (21 x35) .12 1.2 .30 . 00858
G (21 x28) .08 .2 . 60 . 00873

5.2 The Pincued Cylinder

The case of a pinched cylinder, Figure 7, was also analyzed to
further demonstrate th: advantages of the variable grid capability. Lateral
displacements computed from a linear analysis are shown versus the cir-
cumferential coordinate in Figure 8 and versus the axial coordinate in
Figure 9. The curves are for a converged solution, corresponding to a
variable spacing grid with 17 points in the axial and 26 points in the circum-
ferential directions (17 x 26). These results are in good agreement with
results for the same case shown in Reference 16, Discrete values of the
solution are given for the two coarser nets (A and B) which are shown in
Figure 10. It can be seen that the use of the net with variable spacing,

Grid A, leads to results which are at least of the same quality as those
ohtained with the uniform net, Grid B. The computer time corresponding
to the analysis with Grid B is approximately five times the time for

analysis with Grid A.
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5.3 Cylinders With a Circular Cutout

A circuiar cylinder was analyzed for collapse under uniform end
shortening. Its geometrical properties were: length 9 inches,
radius 6 inches, thickness 0.06 inch. At its midlength, it had two dia-
metrically opposite circular cutouts, each of radius 2. 35 inches. Young's
modulus was set to 107 psi and Poisson's ratio to 0.3. Due to symmetry,
only half the length and one quarter of the circumference of the shell was
considered. A finite difference net was chosen with 15 axial and 19 circum-
ferential stations {15 x19). The net is shown in Figure 1. The analysis in-
dicates collapse (a maximum load) for an end shortening of . 0209 inch. The

load maximum is 16, 740 lbs or 66, 960 lbs for the complete cylinder.

The difference between the displacements for two adjacent solutions
close to the point of collapse represents the collapse mode for the case.
In Figure 12c is shown how these incremental displacements vary with the
angular coordinate (see Fig. ll). Figure 12b shows the lateral displace-
ment increments at the meridian 8 = 57°. The displacemeants at the edge
of ‘he cutout (6 = 22.5%) and at 6 = 57° are shown as functions of the axial
load in Figure 13. While the largest displacement occurs at the cutout edge,
the displacement at § = 57° is growing faster indicating that ""buckling"

occurs away from the cutout where the axial stresses are higher.

5.4 Shells with Elliptic Cross-Section

For an elliptic cone the geometric constants occurring in the kine-
matic relations are given as an example in Section 2.8. These expressions
were used here in an analysis of an elliptic cone with the dimensions shown
in Figure 14.

Numerical results were first obtained for the specizl case of an
elliptic cylinder with 2 length of 1.0 in., a thickness of 0, 0144 in,, and
semi-axes of 1, 75 in. and 1.0 in. (sec Fig. 14). Young's modulus was 107
psi and Poisson's ratio was 0.3. The cylinder was subjected to a umiform
end shertening with the edges fiee te rotate but restrained from moving 1n

the radial and circumferemizl directions,.
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Since the 'buckling pattern" was expected to be confined to the
arzas of least curvature, it appeared that antisymmetric behavior with
respect to the normal plane through ¢ = 0 (Fig. 14) could be excluded.
Hence, the analysis was restricted to a 180° panel with symmetry condi-
tions enforced at ¢=0, n. A uniform finite difference grid was chosen
with 11 points in the axial and 29 points in the circumferential directions,
Results obtaineu with finer grids indicated that use of the chosen grid led

to accurate computations of the collapse load.

Due to the symmetry of the prebuckling deformation about the plane
at midlength and about the normal plane through o= n/2, it was necessary
to excite nonsymmetric deformations by the use of small antisymmetric
imperfections. Despite the presence of these imperfections, a deformation
pattern developed at collapse which was symmetric about both of these
planes. Therefore, the continued analysis was restricted to panels cover-

ing half the cylinder length and one quarter of the circumference.

For the particular cylinder considered (aspect ratio of 1. 75), it is
possible to determine the critical load without the use of symmetric (with
respect to the geometric symmetry planes) imperfections. As the load
is increased, a very sharp maximum is found in the load displacement
curve (Figure 14). Beyond this maximum convergence cannot be obtained,

hence the post-buckling curve cannot be directly determined.

For an impeifect shell, the displacement mode which developed
at collapse for a perfect shell was used as a guide in the choice of a suitable

initial imperfection mode

. X\
= - w —_— {
w w, sin (L) cos (6 8)
Load displacement curves were computed for sevcral different values of
the imperfection amplitude W The results are shown in Figure 14,

The normal displacement at ¢ = /2, x = 1./2 is shown as a funct.on of
the axial load in Figure 15, From Figure 14 1t can be scen that for a

sufficiertly large imperfection amplituce, the first snarp maximum does
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not exist-~-the curve is smooth and it is possible to find equilibrium con-
figurations in the post-buckling range. After such configurations have

been found, they can be used as starting values for an analysis in which

the imperfection amplitude is gradually changed until 2 point is found on

the post-buckling curve for perfect shells. After such a point is found, it is
easy to establish post-buckling load displacement curves for perfect shells
(Figure 14).

After the first sharp maximum the postbuckling curve exhibits two
additional limit points which correspond to secondary buckling. The curve
wag not pursued beyond the third maximum because the deformations are
then so large that the applicability of the basic equations is questionable.
Also the buckle pzttern is close to the point of maximum curvature and
bifurcation into an antisymmetric mode is likely. The normal displace-
ment as a function of the circumferential arclength at x = L/2 is shown
in Figure 16. Curves are given for each of the three limit points (A, B,

C on Fig. 14).

In the neighborhood of a limit point the developing collapse or
buckle mode can be obtained as the difference belweer Jdisplacements for
two neighboring solutions. Such collapse modes corresponding to each of
the three points of maximum are shown in Figure 17. It can be seen that
the point of maximum deflection in these patterns moves towards the
point of maximum curvature as the ¢nd shortening increases. While the
primary buckling load is rather sencitive to imperfections, it appears that
the second maximum is net imperfection sensitive; hence, it may be suit-
able as a design limit. Results similar to these have been presented by
Kempner, et al., for oval shells (Refs. 17, 18). However, Kempner's

shells are not elliptic and a direct comparison is not possible.

A series of elliptic con. s was also analyzed. Like the cylinders,
the cones were loaded through uniform axial shortening. At the two ends
rotation was unrestrained but the cross section was not allowed to deform.
Four different cases (including a circular cone) were ¢ 1alyzed. The aspect
ratio of the elliptic cross section was varied but the semi-axes of the

eilipse were chosen such that the circumference was the same in all cases.
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Young's modulus was chosen to be 107 psi and Poisson's ratio was 0. 3.
All the cones had the dimensions (see Fig. 18) t=0.16 in., ¢ =16 in.,

and d = 16 in. The dimensions of the cllipse are shown in Table II.

Table II
a b
Case (in..). (in.)
1 10. 65 10, 65 .
2 .9 9.5
3 12,2 8.7 ¢
4 13.0 7.4

The results for the elliptic cylinders indicate that an imperfection
with an ampliwude of about one percent of the shell thickness will not signi-
ficantly change the critical load. However, if this imperfection is included,
a less severe convergence criterion may be used. Consequently, for
economy in the analysis such an imperfection was included here. Figure 19
shows how the critical load varies with the ellipse ratio for elliptic cones
of equal weight, The decrease in buckling load with increasing aspect
ratio is less drastic than is indicated by the bifurcation buckling analysis
for oval cylinders (Ref. 16). For the circular cone the bifurcation point
and the maximum coincide but for higher values of the aspect ratio the
critical load is above the bifurcation point. The buckling mode for Case 3
(a/b = 1. 4) is shown in Figure 20. Similar results were obtained in a bifur-"

cation buckling analysis for oval cylinders by Kempner, et al (Ref, 16).

It must be emphasized that for all th. cases investigated here a
uniform end shortening was applied tc the shell. Had a unitormly distri-
buted axial load becn applied at both edges, the possibilities for redistri-
bution of stre-ses would have been limited and the performance of the elliptic
shells would have compared less favorably to shells with circular cross-

section.,
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5.5 A Pear-Shaped Cylinder

in Figure 21 is shown a cylinder whose cross section consists of
circular arcs joined by straight lines. The behavior of this shell subjected

to uniform end shortening was investigated with usz of the STAGS code.

As this type of shell is not included among the standard geometries,
a subroutine must first be written for computation of the geometrical con-
stants. The general procedure recommended in Referenre 8 for computation
of the geometrical coefficients can be greatly simplified in a case like this.
If the arclength and the axial distance are chosen as surface coordinates,
clearly the Lame coefficients are A =1, B = 1 and C = 0. Also the local radii

of curvature are directly given.

As seen from Figure 22 the linear range in this case represents

less than 1/30 of the total load history of the shell. The rapid change in

slope of the load-deflection curves at about P = 100 lbs reflects the growth
in normal deflection (buckling) of the flat portions of the shell. Associated

with this growth in w is a redistribution of the axial stress so that the

ate mm e mriwn g

curved segments begin to take up a larger portion of the total axial load P .
As more and more of the axial load is borne by the curved segments, the slope
of the load-end-shortening curve increases until just before collapse, at which
load the entire structure faile. Figures 23 and 24 show the circumferential
distributions of normal outward displacement w and axia! compression/length
NX at the shell midleagth for P = 2328 lbs. At this load, both w and Nx
are growing very rapidly with P in the curved portions 45 < 8 < 90° and
-67.5% < 8 50°,

The rather complex behavior in this case indicates the need for a
flexible strategy for calculation of collapse loads of shells. Small load
steps and frequent refactoring of the equation system matrix are required
in the load region between 100 and 200 lbs even though the displacements

are relatively small in this range. Farther out on the load-end-shortening

curve, where the displacements are larger, rather large load steps can be
used and few refactorings are necessary. Efficient use of the STAGS code,
or any code for prudicting nonlinear behavior of shells, requires a sophisti-

cated iteration strategy built into it and a well-trained user to take advantage
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of this strategy.

A finite difference grid was used with 45 circumferential nodes and
9 2xial nodes covering 1/2 of the circumference and 1/2 of the length. A
variable spacing was used such that the gridlines would follow the inte.-

sections be'ween flat and curved shell segments.

5.6 Bending of Cylindrical Panels Under Point Loading

The STAGS code was applied in an analysis of the behavior of
shallow cylindrical panels as shown in Figure25. The panels were subjected
to bending through application of a point load at the midpoint of a panel sup-
ported at the curved edges and with the straight edges free. The behavior
of such shells is expected to be highly ncnlinear. If the load is applied
towards the center of the circular arc, the cross-section will be more
and more shallow with application of load and the result is similar to the
well known Brazier effect. If the load is directed away from the center,
the free edges will be under axial compression and the shell will collapse

under a moderate load.

Three cases were considered: one with clamped edges loaded to-
wards the center and two with simply supported edges; one loaded towards
and one loaded away from the center. Ten axial and nine circumferential
stations were used. The results, in terms of load displacement curves,
are shown in Figure 26 for the shells with load toward the center, and in
Figure 27 for the shell loaded away from the center. In the case with
clamped edges, collapse is prevented by the development of axial mem-
brane tension. Collapse in the case of simple support is indicated by
a maximum in the load deflaction curve. In a case like this, i.e., when
the load is stepwise increased rather thar a displacement, points on the
curve cannot be computed through the maximum. At the point of maximum
the equilibrium configuration is unstable and hence the coefficient matrix
has a zero determinant., This determinant, as obtained when refactoring
was required, is plotted versus the load in Figure £8. In this case, it

1s much easier to read the critical load from the determinant glot.
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5.7 Inelastic Buckling of Plate

A flat plate was considered which was simply supported on two
opposite edges and, on the other two edges, in-plane displacements were
allowed but lateral displacements and rotation were suppressed. Axial
compression was introduced in the plate at the simply supported edges.

Plate dimensions and boundary conditions are shown in Figure 29,

In the elastic case the bifurcation buckling theory would be appli-
cable and the value of the critical load can be obtained by use of simpler
means than a nonlinear analysis. However, application of STAGS also
gives information about the plate behavior in the post-buckling range.

The critical load for the plate can be established by use of the nonlinear
analysis if lateral displacements are triggered by small initial imperfec~
tions. As the lateral displacements grow very rapidly and if the imperfec-
tion amplitude is sufficiently small, the load-displacement curve has a
sharp knee at the buckling load as it is traditionally defined. However, the
cmaller the imperiection is, the sharper must the convergence criterion be,
and the more expensive is the analysis. For very small imperfections, it
would be necessary to use double precision arithmetic. Therefore, advan-
tage was taken of the fact that buckling is followed by redistribution of
stresses. The curve corresponding to the difference between axial stress
at the edge and axial stress at the center of the plate has a much sharper
knee than the load displacement curve has and it is possible to determine

the buckling load with larger values of the imperfections.

The method was demonstrated first for a plate which was assumed
to remain elastic for any stress. A grid was used with 8 nodes along
simply supported sides and 6 nodes along the clamped sides. The ini-
tial imperfection was given by

-5 X my

W 10 sin T cos —E—

The results for the elastic plate are shown in Figure 30. The plot
of u versus ¢ indicates a value of a critical load of 2800 l«:g/(‘mz which
ts 1n close agreement with the result from the classical buckling analysis

tor plates.
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‘The same analysis was also carried out for a 10 percent thicker
plate, both elastic end inelastic with the stress-strain curve for uniaxial
compression represented by the polygon shown in Figure 3l. The results
are shown in Figure 32 in the form of a load-displacement curve. A plot
of the square of the displacement gives a clearer indication of the critical
load. The critical stress is found to be 2270 kg/cm2 corresponding to an
axial load of 1100 kg. The kink in the cu. ve for lateral displacement is
presumably Jue to the fact that as the correr on the load displacement curve
is reacied by the average stress, the bending stiffness drops with the reduc-

tion in tangent modulus.

As the form of tiie load displacement curve above the second corner
is in this case irrelevant, more accurate results would have been obtained
if corner points had been concentrated in the neightorhood of the critical

stress.
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Section 6.0
CONCLUSIONS AND RECOMMENDATIONS

Certain improvements or extensions of the STAGS computer pro-
gram are reported here. It appears from solutions of severzl samplec
problems that with these extensions the STAGS computer program has
become a powerful tool fcr the analysis of the nonlinear behavior of shells
of general shape. The use of the energy method with finite differences
appears to be attractive. For most shells, on= of the standard gecmetry
routines can be used, in which case determianation of the input data general-
ly is a matter of only a few minutes. Through comparison with other pro-
grams (Ref. 19), it has been found that the program is efficieat with re-
spect to computer time and to numerical stability. Likewise, the modi-
fiea Newton-Raphson method appears to be the best choice for the solu-
tion of the nonlinear equation system. It has been favorably compared ’
to other numerical methods in Reference 20. Finally, through application
to a large number of practical cases, some with previously known solu-
tions, the validity of the program has been reasonably well established in
all its aspects. Under sponsorship cf the NASA Manned Spacecraft Center
in Houston, a series of tests of cylinders with cutouts has been carried out
and results have been compared to analytical resuits from STAGS. The
agreement between test results and analytical predictions is very good
(Ref. 21).

In view of the successful application of the program, 1t appears
desirable that further extensions be made For instance, it would erha-ice

the value of the program 1f the following 1tems were included.

Improved inpat and outpat, particularly expanded

Diot cmoahility imeidding graphita. cisplav of the
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Further improvement in program efficiency.
Input diagnostic.
Pre- and post-processors of data files,

Inclusion of some finite elements in the program
such as ba.s and beams, which cannot be properly
represented in the present program. Such a hybrid
program would combine the efficiency of the finite
difference analysis with the versa‘ility of the finite

element analysis.
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